TILING PROBLEMS IN EDGE-ORDERED GRAPHS
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ABSTRACT. Given graphs F' and G, a perfect F-tiling in G is a collection of vertex-disjoint copies
of F' in G that together cover all the vertices in G. The study of the minimum degree threshold
forcing a perfect F-tiling in a graph G has a long history, culminating in the Kithn—Osthus theorem
[Combinatorica 2009] which resolves this problem, up to an additive constant, for all graphs F'. We
initiate the study of the analogous question for edge-ordered graphs. In particular, we characterize
for which edge-ordered graphs F' this problem is well-defined. We also apply the absorbing method
to asymptotically determine the minimum degree threshold for forcing a perfect P-tiling in an
edge-ordered graph, where P is any fixed monotone path.

1. INTRODUCTION

1.1. Monotone paths in edge-ordered graphs. An edge-ordered graph G is a graph equipped
with a total order < of its edge set F(G). Usually we think of a total order of E(G) as a labeling
of the edges with labels from R, where the labels inherit the total order of R and where edges are
assigned distinct labels. A path P in G is monotone if the consecutive edges of P form a monotone
sequence with respect to <. We write P; for the monotone path of length % (i.e., on k edges).
The study of monotone paths in edge-ordered graphs dates back to the 1970s. Chvatal and
Komlés [7] raised the following question: what is the largest integer f(K,) such that every edge-
ordering of K, contains a copy of the monotone path P]f( Kn) of length f(K,)? Over the years

there have been several papers on this topic [4, 5, 6, 11, 17, 19]. In a recent breakthrough, Bucié,
Kwan, Pokrovskiy, Sudakov, Tran, and Wagner [4] proved that f(K,) > n'=°(1). The best known
upper bound on f(kK,) is due to Calderbank, Chung, and Sturtevant [6] who proved that f(K,) <
(1/2 + o(1))n. There have also been numerous papers on the wider question of the largest integer
f(G) such that every edge-ordering of a graph G contains a copy of a monotone path of length
f(G). See the introduction of [4] for a detailed overview of the related literature.

A classical result of Rodl [19] yields a Turdn-type result for monotone paths: every edge-ordered
graph with n vertices and with at least k(k + 1)n/2 edges contains a copy of F,;. More recently,
Gerbner, Methuku, Nagy, Palvolgyi, Tardos, and Vizer [10] initiated the systematic study of the
Turdn problem for edge-ordered graphs.

It is also natural to seek conditions that force an edge-ordered graph G to contain a collection
of vertex-disjoint monotone paths P that cover all the vertices in G, that is, a perfect Py -tiling
in G. Our first result asymptotically determines the minimum degree threshold that forces a perfect
P -tiling.

TA: Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA. Email:
igoraa2@illinois.edu. Research partially supported by UIUC Campus Research Board RB 22000.

SP: University of Birmingham, United Kingdom. Email: s.piga@bham.ac.uk. Research supported by EPSRC
grant EP/V002279/1.

AT: University of Birmingham, United Kingdom. Email: a.c.treglown@bham.ac.uk. Research supported by
EPSRC grant EP/V002279/1.

7ZX: Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA. Email:
zimux2@illinois.edu.

1



Theorem 1.1. Given any k € N and n > 0, there exists an ng € N such that if n > ng where
(k + 1)|n then the following holds: if G is an n-vertex edge-ordered graph with minimum degree

6(G) = (1/2 +n)n

then G contains a perfect Py -tiling. Moreover, for all n € N with (k + 1)|n, there is an n-vertex
edge-ordered graph Go with §(Go) > [n/2] — 2 that does not contain a perfect Py -tiling.

For the edge-ordered graph Gy in Theorem 1.1, one can take any edge-ordering of the n-vertex
graph consisting of two disjoint cliques whose sizes are as equal as possible under the constraint
that neither has size divisible by k4 1. Our proof of Theorem 1.1 in [3] provides the first application
of the so-called absorbing method in the setting of edge-ordered graphs.

1.2. The general problem. Let F' and G be edge-ordered graphs. We say that G contains F if
F is isomorphic to a subgraph F’ of G; here, crucially, the total order of E(F) must be the same
as the total order of E(F") that is inherited from the total order of E(G). In this case we say F” is
a copy of F in G. For example, if G contains a path F’ of length 3 with consecutive edges labeled
5, 17 and 4 then F’ is a copy of the path F of length 3 with consecutive edges labeled 2, 3 and 1.

Given edge-ordered graphs F' and G, an F'-tiling in G is a collection of vertex-disjoint copies of
F in G; an F-tiling in G is perfect if it covers all the vertices in G. In light of Theorem 1.1 we raise
the following general question.

Question 1.2. Let F' be a fixed edge-ordered graph on f € N wertices and let n € N be divisible
by f. What is the smallest integer f(n,F') such that every edge-ordered graph on n vertices and of
minimum degree at least f(n, F') contains a perfect F-tiling?

Theorem 1.1 implies that f(n, P;) = (1/24o0(1))n for all k € N. Note that the unordered version
of Question 1.2 had been well-studied since the 1960s (see, e.g., [1, 8, 12, 14, 15]) and forty-five
years later a complete solution, up to an additive constant term, was obtained via a theorem of
Kiithn and Osthus [15]. Very recently, the vertex-ordered graph version of this problem has been
asymptotically resolved [2, 9].

Question 1.2 has a rather different flavor to its graph and vertex-ordered graph counterparts.
In particular, there are edge-ordered graphs F' for which, given any n € N, there exists an edge-
ordering < of the complete graph K, that does not contain a single copy of F. Thus, for such F,
Question 1.2 is trivial in the sense that clearly there is no minimum degree threshold f(n, F') for
forcing a perfect F-tiling. This motivates Definitions 1.3 and 1.4 below.

Definition 1.3 (Turdnable). An edge-ordered graph F' is Turdnable if there exists a t € N such
every edge-ordering of the graph K; contains a copy of F.

Definition 1.4 (Tileable). An edge-ordered graph F' on f vertices is tileable if there exists a t € N
divisible by f such that every edge-ordering of the graph K; contains a perfect F-tiling.

The following Ramsey-type result, attributed to Leeb (see [10, 18]), says that in every sufficiently
large edge-ordered complete graph we must always find a subgraph which is canonically ordered.
For n > 5 there are four non-isomorphic canonical edge-orderings of K,,. We omit the definitions of
the canonical edge-orderings in this extended abstract, but they can be found in [10, Section 2.1].

Proposition 1.5. For every k € N there is an m € N such that every edge-ordered complete
graph K., contains a copy of K that is canonically edge-ordered.

In [10] it was observed that Proposition 1.5 yields the following full characterization of Turdnable
graphs.

Theorem 1.6 (Turdnable characterization). An edge-ordered graph F on n wvertices is Turdnable

if and only if all four canonical edge-orderings of K,, contain a copy of F'.
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In [3], we prove a result analogous to Theorem 1.6 for tileable graphs. More precisely, we provide
a full characterization of all n-vertex tileable graphs with respect to twenty fixed edge-orderings of
the complete graph K,,. We call those orderings x-canonical orderings of K,,. The full definition of
the x-canonical orderings is a little involved and we omit the details here, but the precise description
can be found in [3].

Theorem 1.7 (Tileable characterization). An edge-ordered graph F on n vertices is tileable if and
only if all twenty x-canonical orderings of K, contain a copy of F'.

In [3] we study several consequences of Theorems 1.6 and 1.7. In particular, we prove that the
notions of Turdnable and tileable are genuinely different. More precisely, we show that there are
(infinitely many) edge-ordered graphs that are Turdanable but not tileable.

In [10] it is proven that no edge-ordering of K, is Turdnable and consequently, any edge-ordered
graph containing a copy of K4 is not Turdnable and therefore not tileable. Thus, for an edge-
ordered graph to be tileable it cannot be too ‘dense’. We show in [3] that no edge-ordering of K,
is tileable.!

A graph H is universally tileable if for any given ordering of E(H), the resulting edge-ordered
graph is tileable. Similarly, we say that H is universally Turdnable if given any edge-ordering of
H, the resulting edge-ordered graph is Turdnable. Using [10, Theorem 2.18], in [3] we characterize
all those graphs H that are universally tileable.

Theorem 1.8. Let H be a graph. The following are equivalent:

(a) H is universally tileable;

(b) H is universally Turdnable;

(¢) (i) H is a star forest (possibly with isolated vertices),* or
(i) H is a path on three edges together with a (possibly empty) collection of isolated vertices, or
(iii) H is a copy of K3 together with a (possibly empty) collection of isolated vertices.

Moreover, in [3] we determine the asymptotic value of f(n, F) in Question 1.2 for all connected
universally tileable edge-ordered graphs F'.

The characterization of tileable edge-ordered graphs given in Theorem 1.7 lays the ground for
the systematic study of Question 1.2. The second and third authors will investigate this problem
further in a forthcoming paper. Already though we can say something about this question. Indeed,
an almost immediate consequence of the Hajnal-Szemerédi theorem [12] is the following result.

Theorem 1.9. Let F' be a tileable edge-ordered graph and let T(F') be the smallest possible choice
of t € N in Definition 1./ for F. Given any integer n > T(F') divisible by |F|,

F(n, F) < (1 - T(1F)> n.

The proofs of Theorems 1.1, 1.7, 1.8, and 1.9 can be found in [3]. In the next section we outline
the main ideas in the proof of Theorem 1.1.

2. OUTLINE OF THE PROOF OF THEOREM 1.1

As mentioned above, the proof of Theorem 1.1 applies the absorbing method. This approach
reduces the problem of finding a perfect P -tiling into two sub-tasks: (i) obtain an ‘absorbing
structure’ A in the host graph G, and (ii) find a Pj-tiling covering almost all of the vertices in

G\ A.

IRecall that K, denotes the graph obtained from K; by removing an edge.
2A star forest is a graph whose components are all stars.
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This latter task is achieved via a relatively straightforward application of a result of Komlés [13].
The main task is therefore constructing the absorbing structure.

Roughly speaking, for an edge-ordered graph G, we say that a set of vertices A C V(G) is a
Pr-absorber if, for every sufficiently small set of vertices W C V(G) \ A whose size is divisible by
k + 1, we have that G[IW U A] contains a perfect Pg-tiling.

We apply (an edge-ordered version of) a lemma by Lo and Markstrom [16, Lemma 1.1] which
implies that in order to construct such a P;-absorber we only need to find many so-called ‘local
absorbers’ for every pair of vertices x,y € V(G). More precisely, a local absorber for x and y is
a small set L C V(G) with the property that both G[L U {z}] and G[L U {y}] contain perfect
P -tilings.

To build up such local absorbers L for z and y, we prove a supersaturated version of the afore-
mentioned result of Rodl: every edge-ordered graph with linear average degree contains ‘many’
copies of P;. In particular, as our edge-ordered graph G has 6(G) > (1/2+ o(1))n this allows us to
find many copies of P;_, in the neighborhood Ng(v) of any vertex v € V(G). In fact, with some
care, one can show the following stronger property: for every two different vertices z,y € V(G)
there are many vertices w € V(G) so that (a) G contains many copies Py, of Py, for which x
(resp. w) can be added to the start or end of P, to form a copy of P in G, and (b) G contains
many copies Py, of P;_, for which y (resp. w) can be added to the start or end of P, to form a
copy of P in G.

This now gives us the structure we need to construct the local absorbers L for x and y. Indeed,
for every choice of w, P, and P, above, we define a local absorber L := V (Pyy) UV (Pyy) U{w}.
Properties (a) and (b) ensure each such L is indeed a local absorber for z and y, as desired.

Note that from the outline above it may not seem clear why our proof is specific to monotone
paths, rather than other edge-orderings of paths. However, the details of the proof very much rely
on our paths being monotone. For example, one crucial property we exploit is that if P = uj - - - ug11
is a monotone path, then wj - - - ug is isomorphic to ug - - - ugy1. In other words, the path obtained
by dropping the last vertex is isomorphic to the one obtained by dropping the first one. It is not
hard to see that this property is satisfied only by monotone paths.

3. ALMOST PERFECT TILINGS AND OPEN PROBLEMS

As part of the proof of Theorem 1.1 in [3], we establish the minimum degree threshold that forces
an ‘almost perfect’ P;-tiling in an edge-ordered graph. It is also natural to consider this problem
more generally. This motivates the following definition.

Definition 3.1 (Almost tileable). An edge-ordered graph F is almost tileable if for every 0 < e < 1
there exists a t € N such every edge-ordering of the graph K; contains an F'-tiling covering all but
at most et vertices of K.

It is easy to see that this notion is equivalent to being Turanable.
Proposition 3.2. An edge-ordered graph F is almost tileable if and only if F' is Turdnable.

Proof. The forward direction is immediate. For the reverse direction, consider any F that is
Turdnable. Given any 0 < ¢ < 1 define ¢t := [T(F)/e|. (Recall T(F) is defined in the statement
of Theorem 1.9.) Then given any edge-ordering of K;, by definition of T'(F') we may repeatedly
find vertex-disjoint copies of F' in K, until we have covered all but fewer than 7T'(F') vertices in Kj.
That is, we have an F-tiling covering all but at most et vertices of K, as desired. ([

In light of Proposition 3.2 we propose the following question.
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Question 3.3. Let F be a fired Turdnable edge-ordered graph. What is the minimum degree
threshold for forcing an almost perfect F-tiling in an edge-ordered graph on n wvertices? More
precisely, given any € > 0, what is the minimum degree required in an n-vertex edge-ordered graph
G to force an F-tiling in G covering all but at most en vertices?

Finally, we know that every Turdnable (and therefore tileable) edge-ordered graph F' does not
contain a copy of K,. However, we are unaware of any result that forbids F' from having large
chromatic number.

Question 3.4. Is it true that for every k € N there is a Turdnable edge-ordered graph F whose
underlying graph has chromatic number at least k?
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